?我們知道氧氮氫分析儀可以快速、準確測定鋼鐵、有色金屬、陶瓷及和其它無機材料中氧、氮、氫的含量,具有檢測范圍寬,檢測下限低,測量過程簡化,載氣單一等技術優勢。下面我們光譜儀廠家——創想儀器GLMY就鋼鐵以及有色金屬行業中為什么要對氧氮氫進行檢測以及氧氮氫元素的來源及為危害進行簡單的分析。
一、鋼鐵中氧氮氫的來源
1、氧的來源
氧在各種煉鋼爐冶煉終點時都以一定量存在鋼水中,氧是生產過程中供給的,因為煉鋼過程中首先是氧化過程,脫[P]、脫[S]、脫[Si]、脫[C]都需要向鐵水供氧。但隨著煉鋼過程的進行,盡管工藝千變萬化,可是煉鋼爐內熔池中鋼液的[C]、[O]的關系卻有共同的規律性。即隨著[C]的逐步降低, [O]卻在逐步增高,[C]和[O]有著相互對應的平衡關系。

鋼鐵中氧的來源
2、氮的來源
氮氣在爐氣中的分壓力很高,大氣中氮的分壓力大體保持在7.8Χ10^4Pa,因此鋼中的氮主要是鋼水裸露過程中吸入并溶解的。電爐煉鋼,包括二次精煉的電弧加熱,加速了氣體的解離,故[N]含量偏高;平爐冶煉時間長增加了氮含量;轉爐復吹控制不當,氮氬切換不及時也會增加氮的含量;鐵合金、廢鋼鐵和渣料中的氮也會隨爐料帶入鋼水。
3、氫的來源
氫氣在爐氣中的分壓力很低,大氣中氫的分壓力為0.053Pa。因此鋼中的氫主要由爐氣中的水蒸汽的分壓力來決定的。氫進入鋼液的主要途徑是:通過廢鋼表面的鐵銹(xFeO?yFe3O4?2H2O);鐵合金中的氫氣;增碳劑、脫氧劑、覆蓋劑、保溫劑、遭渣劑(Ca(OH)2)、瀝青和焦油中的水份;未烤干的鋼包、中間包??
二、鋼鐵中氧氮氫的危害?
1、氧的危害
氧和氫一樣,都會對鋼的機械性能產生不良影響。不僅是氧的濃度,而且含氧的夾雜物的多少、類型及其分布等也有很重要的影響。這類夾雜物是指金屬氧化物、硅酸鹽、鋁酸鹽、含氧硫化物以及類似的夾雜化合物。煉鋼需要脫氧,因為凝固期間,溶液中氧和碳反應會生成一氧化碳,可以造成氣泡。另外,冷卻時氧可以作為FeO、MnO以及其他氧化夾雜物從溶液中析出,從而削弱其熱加工或冷加工性,以及延展性、韌性、疲勞強度和鋼的械加工性能。氧與氮和碳還能引起老化或者硬度在室溫下自發的增加。對于鑄鐵,當鑄塊正凝固時,氧化物與碳可以發生反應,因此造成產品的孔隙和產品的脆化。
創想儀器GLMY氧氮氫分析儀
2、氮的危害或作用
氮不能一概而論的歸結為有害氣體元素,因為有些特種鋼是有目的的加入氮。所有的鋼均含有氮,其存在量取決于鋼的生產方法,合金元素的種類、數量及其加入方式,鋼的澆鑄方法,以及是否有目的的加入氮。有些牌號的不銹鋼,適當增加N的含量,可以減少Cr的使用量,Cr相對很貴,此方法可以有效降低成本。鋼鐵中的氮大部分是呈金屬氮化物的形態。例如:在存放一些時間后,鋼發生應變時效,就不能被深沖加工(比如深沖加工為汽車保護板),因為鋼會出現撕裂,不能沿各個方向被均勻地拉伸。這是由于晶粒大以及Fe4N沉積在晶粒界面上造成的。再如:在不銹鋼中,晶粒界面上形成氮化鉻(Cr2N)會耗盡界面上含有的鉻,并引起所謂的粒間腐蝕現象。加入鈦,優先形成氮化鈦,就能防止這種有害的影響。
3、氫的危害
當鋼中氫含量大于2ppm時,氫在所謂“鱗片剝落”現象中起重要作用。在滾軋和鍛造 后的冷卻過程中出現內裂和斷裂現象時,這種剝落現象一般更加明顯,而且在大的斷面或者高碳鋼中更經常發現這種現象。由于內應力的存在,這種缺陷會造成發動機使用過程中大轉子發生崩裂。鑄鐵中氫大于2ppm時,容易出現孔隙或一般的多孔性,這種氫造成的多孔性將造成鐵的脆化?!皻浯唷敝饕霈F在馬氏體鋼中,在鐵氧體鋼中不十分突出,而在奧氏體鋼中實際上尚不清楚。另外,氫脆一般與硬度和含碳量一起增加。
所以一般來說一些鋼鐵、有色金屬等行業會采購一些檢測儀器來進行來料檢測或者使生產質量控制等,而這些檢測儀器大致可分為氧氮氫分析儀、碳硫分析儀、直讀光譜儀、X熒光光譜儀等儀器,當然可能還會涉及更多的檢測儀器,但一些比較常見的大多屬于以上幾種。因為產品質量近年來也備受矚目,各行業甚至國家也在產品質量方便有了更深層次的把關。